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Simplicial Complexes
A simplicial complex on a set V (vertices) is a set  of 

subsets of V (faces) such that:

1) If vV, then v  

2) If F   and G  F, then G  

The dimension of a face F is F  - 1

A facet is a maximal face of 

A complex is pure if every facet has the same dimension

Or take simplices, and glue them together along faces



The f-vector of a Simplicial Complex

It is convenient to keep track of the number of faces in a 

simplicial complex using fi = number of faces of cardinality i. (f0
= 1)

A useful bookkeeping device can be the generating function: 

f(x) = xr + f1x
r-1 + f2x

r-2 + f r   where V = r

f( ) = x3 + 3x2 + 3x + 1

The Reduced Euler Characteristic 

() = (-1)r-1 f(-1) , since this is the alternating sum of the 

number of faces in a given dimension minus one.

Note: The Reduced Euler Characteristic is the alternating sum of 

betti numbers (homology dimension) of a space minus 1



Partially Ordered Sets

A Poset P is a set together with a binary operation  that is:

1)  Reflexive: x  x

2) Transitive: If x  y and y  z, then x      z

3) Antisymmetric:  If x  y and y  x, then x = y

y covers x if x  y and there is no z  P such that x  z  y

Two elements x, y are comparable if x  y or y  x.

Otherwise, they are incomparable

A chain (or totally ordered set) is a poset in which any two 

elements are comparable.  Look like:  x1  x2  x3  x4



Order Complexes
There is a poset P naturally associated to every simplicial

complex:  the elements of the poset are faces, and the 

ordering is by inclusion.

Conversely, define (P) to be the simplicial complex on the 

elements of P whose faces are all the chains of P   - 0.  

(P) is called the order complex of P. 



Lattices
A lattice is a poset where every pair of elements has a least 

upper bound (LUB) and a greatest lower bound (GLB)

A LUB, or join of x and y, written z = x  y   , is a z  P such 

that x  z, y  z, and if x  w, y  w, then z  w.  

x  y is the meet of x and y

All finite lattices have a 0 and a 1, elements that are universal 

upper or lower bounds.

Which of the following posets are lattices? (exercise in 

Stanley)
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A lattice is a poset where every pair of elements has a least 

upper bound (LUB) and a greatest lower bound (GLB)

A LUB, or join of x and y, written z = x  y   , is a z  P such 
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x  y is the meet of x and y

All finite lattices have a 0 and a 1, elements that are universal 

upper or lower bounds.

Which of the following posets are lattices? (exercise in 

Stanley)

NONE



Examples of Lattices
The natural numbers form an infinite lattice with no “1”:

a  b if ab

a  b is the least common multiple

a  b is the greatest common divisor

The lattice of subgroups of a group:

H  K if H is contained in K

H  K = H, K , subgroup generated by H and K

H  K = H  K, check subgroups are closed under intersection

More Examples: (Stanley)



Types of Lattices

A poset/lattice is graded if every maximal chain has the same 

length n.  Then there is a rank function : P 1n such 

that (y) = x+1 if y covers x and (x)= 0 for minimal elements 

x.  

An atom is an element x of a lattice that covers 0  (x)=1

A finite graded lattice is semimodular if 

(x) + (y)  (xy) + (xy)

Not graded:                   Graded, not semimodular: 

A finite graded lattice is geometric if it is semimodular and 

atomic, meaning every element is a join of atoms.



Matroids
A matroid is a pair (E, I), where E is a set, and I is a set of 

subsets of E.  It is sometimes denoted M(E)

The elements in E are called edges

If a set of edges is in I, it is called independent.

The set I must obey certain axioms to be a matroid:

1)   I

2) If A  I, and B  A, then B  I

3) If A, B  I and  B  <  A  then  x  A such that           (B

 {x} )  I



Examples of Matroids

E := v1, 
,vk  are the columns of a matrix, 

I    := linearly independent subsets of E (over a given field)

Any graph yields a matroid: the edges of the graph are the 

elements (edges) of the matroid

Independent sets are subsets of spanning trees, so a set is 

independent if and only if it contains no circuits.

Here are two representations of the same matroid:



The Lattice of Flats of a Matroid
All matroids have a rank function that satisfies

r(X) + r(Y)  r(XY) + r(X  Y )   X, Y  E

A closed set or flat of a matroid is a set X  E such that      

e  E, r(X)  r(X  e).

Then the following is a lattice:

All flats of the matroid M(E)

X  Y = X  Y  

X  Y = closure(XY)

-This lattice is finite and semimodular

-Every element must be a join of atoms

Fact: A lattice is geometric if and only if it is the lattice of flats of 

a matroid



The Mobius Function of a Lattice

The Mobius function is the unique function : L  L  Z  s.t.

1) If  x and y are incomparable then (x,y) = 0

2) (x, x) = 1 

3) If x  y then       (x,z) = 0

This recursive definition is enough to compute values of 

on any lattice



The Mobius Function of a Lattice

The Mobius function is the unique function : L  L  Z  s.t.

1) If  x and y are incomparable then (x,y) = 0

2) (x, x) = 1 

3) If x  y then       (x,z) = 0

Use       (0,z) = 0 to compute values of  from the bottom up

(0, 1)+1-4+6-4=0; (0, 1)= 1

1+3(-1)+3(1)+ (0, y)=0; (0, y)= -1

(0, 0)+(0, z1)+(0, z2)+ (0,y)=0; 1         

(0, 0)+ (0, y)= 0;   (0, y)= -1       

(0,0)=1



The Mobius Function of a Lattice

Mobius functions of geometric lattices always alternate sign

Let L be a geometric lattice andL = L – 0,1

Then  ((L   ))= (L)

Use       (0,z) = 0 to compute values of  from the bottom up

(0, 1)+1-4+6-4=0; (0, 1)= -1

1+3(-1)+3(1)+ (0, y)=0; (0, y)= -1

(0, 0)+(0, z1)+(0, z2)+ (0,y)=0; 1         

(0, 0)+ (0, y)= 0;   (0, y)= -1       

(0,0)=1



The Mobius function on a Matroid

We define (M) to be (, E) on the lattice of flats of the M

If the empty set is not a flat (i.e. M contains a loop), then (M) 

= 0

If the empty set is a flat, then we can define the 

characteristic polynomial of M as:

And another familiar friend appears:

The Tutte Polynomial strikes again!



Shellability

A linear ordering of the facets is just a list:  F1, F2,  Fk

A shelling is such an order with a special condition:

Pick a first facet.  Now, each new facet added to the list must 

meet the old complex at a nonempty union of maximal proper 

faces.

A complex is shellable if it is pure and admits a shelling
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Then ABCDEF is a shelling

C and E do not introduce new vertices

F does not even introduce new edges
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More Shelling Facts

A graph (1-dimensional complex) is shellable if and only if it is 

connnected.

Any ordering of the facets of a simplex is a shelling

Every polytope (convex hull of points) is shellable, but order 

matters.  In fact, not every partial shelling can be completed.  

It’s worth asking what sort of structure each new piece of the 

shelling is attached to.  In the previous example, sometimes 

we glued new facets to a single edge, two edges, even 3 

edges forming a triangle (in the case of the front face F).



The Shelling Polynomial
Let the restriction of a facet R(Fi) = x Fi : Fi { x  i-1

R(Fi) =  if and only if i = 1 

R(Fi) = Fi only if nothing new was added in lower dimension

The shelling polynomial h is given by

h (x) = 
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The Shelling Polynomial
Let the restriction of a facet R(Fi) = x Fi : Fi { x  i-1

R(Fi) =  if and only if i = 1 

R(Fi) = Fi only if nothing new was added in lower dimension

The shelling polynomial h is given by

h (x) = x3 +x2+x+x2+x



The Shelling Polynomial
Let the restriction of a facet R(Fi) = x Fi : Fi { x  i-1

R(Fi) =  if and only if i = 1 

R(Fi) = Fi only if nothing new was added in lower dimension

The shelling polynomial h is given by

h (x) = x3 +x2+x+x2+x + 1  = x3 + 2x2 +2x + 1



The Shelling Polynomial
Let the restriction of a facet R(Fi) = x Fi : Fi { x  i-1

h (x) = x3 +x2+x+x2+x + 1  = x3 + 2x2 +2x + 1

Theorem:  If  is a shellable complex, then f(x) = h(x+1)

Here, f(x) = x3 + 5x2 +9x + 6

Corollary: h(0) = f(-1) = (-1)r-1 () 

Note that h(0) is the constant term of h(x), so it represents 

all facets of the shelling where Fi =R(Fi)



Matroid Complexes

If M is a matroid, then let IN(M) be the simplicial complex 

whose faces are the independent subsets of E

IN(M) There are 2 interior 

triangles: 145 and 245

The matroid M

represented graphically



Matroid Complexes

If M is a matroid, then let IN(M) be the simplicial complex 

whose faces are the independent subsets of E

IN(M) is a pure complex, since every maximal independent set 

(basis) is the same size in a matroid

IN(M) is always shellable.  Any linear ordering of the elements 

of M induces a lexicographic ordering on the bases, and this 

ordering of the facets of IN(M) is a shelling

In fact, a simplicial complex is a matroid complex if and only if 

every ordering of the vertices induces a lexicographic shelling.



The Lexicographic Shelling



The Shelling Polynomial and the Matroid
If M is a matroid, then let IN(M) be the simplicial complex whose 

faces are the independent subsets of E

Given an ordering of the elements, we can find R(B), the 

restriction of the facet representing the basis B, for any basis:

An element e  E-B is externally active if it is the least element 

of the circuit contained in B  e.  Denote the number of 

externally active elements to a basis by e(B)

Dually, an element e  B is internally active if it is the least 

element of the bond (cycle in the dual matroid) E-B  e.  

Denote the number of internally active elements by i(B). 

R(B)= IP(B), all the internally passive elements.  These are the 

elements in the basis that are not “too small”



Shelling Polynomials Hit Matroids

Recall that R(B)= IP(B),     

and all our facets are bases now.

i(B)= internal activity

e(B)= external activity

Dually,                           where  is IN(M)

Then
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